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Background: Typhoid fever, caused by Salmonella typhi, spreads through food or water 

contaminated with manure, posing significant individual and public health risks. This 

study analyzes typhoid fever dynamics using a mathematical model with susceptible, 

unprotected, infected, and recovered populations. 

Methods: The next-generation matrix was employed to compute the threshold quantity, 

evaluating the existence and stability of equilibrium points. Two numerical schemes 

were developed: a conditionally stable fourth-order Runge–Kutta (RK-4) scheme and an 

unconditionally stable nonstandard finite difference (NSFD) scheme. The NSFD scheme 

was designed to ensure dynamic reliability by preserving the continuous model's key 

properties. Numerical simulations were conducted using MATLAB R2015b. 

Results: The RK-4 scheme maintained reliability only for smaller step sizes and did not 

preserve all essential properties of the original model. In contrast, the NSFD scheme 

accurately captured the dynamics of the model, maintaining positivity, boundedness, and 

monotonicity of solutions. Stability analyses revealed that the NSFD scheme converges 

locally and globally, irrespective of step size, for both disease-free and endemic 

equilibrium points. 

Conclusion: The NSFD scheme preserves all critical dynamic properties of the 

continuous model and demonstrates its effectiveness in predicting the spread of typhoid 

fever. This study highlights the NSFD scheme as a robust numerical tool for modeling 

infectious disease dynamics, offering accurate and reliable results in alignment with the 

theoretical model. 

 

Keywords: Typhoid fever; Mathematical modeling; Equilibrium stability; Runge–Kutta 
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Introduction 
 

Typhoid fever is a serious infectious 

disease caused by the bacterium Salmonella 

typhi, a human-specific pathogen that 

primarily infects the intestines and 

bloodstream (1). It spreads through 

contaminated food and water, leading to 

systemic infections that can become life-

threatening without prompt treatment (2). 

Despite advancements in sanitation, this 

disease remains a significant public health 

challenge, particularly in developing 

nations (2, 3). Common symptoms include 

headache, stomach pain, joint pain, muscle 

aches, loss of appetite, diarrhea, skin spots, 

and fever (4). Without treatment, typhoid 

fever can lead to severe complications, 

including internal bleeding and abdominal 

infections due to the release of bacterial 

toxins (5). Diagnosis involves blood or 

stool tests to detect S. Typhi (6). Preventive 

measures include antibiotics, vaccinations, 

proper sanitation practices, and access to 

clean water (7). Vaccination remains a 

critical component of typhoid prevention, 

 

 

 

Afghanistan Journal of Infectious Diseases 

AJID 
https://ajid.ghalib.edu.af/index.php/ajid 

 

2025 Jan 3(1): 56-73 
 

mailto:z.movaheedi2@gmail.com
https://doi.org/10.60141/ajid.68
https://ajid.ghalib.edu.af/index.php/ajid


 
 57           Movaheedi Z, et al. Afghanistanjournal of infectious diseases 2025 Jan 3(1): 56-73.  

 

with current options including the 

injectable Vi polysaccharide vaccine, 

which is approximately 65% effective, and 

the oral Ty21a vaccine (8, 9). The first 

typhoid vaccine was introduced over a 

century ago (10), and newer formulations 

continue to be developed to improve 

efficacy and accessibility. 

Although preventive measures have 

reduced the burden of typhoid fever, the 

disease continues to pose a significant risk 

in many parts of the world, especially 

where access to clean water and sanitation 

is limited. Understanding the spread and 

control of typhoid is crucial for developing 

effective public health strategies. In this 

context, mathematical models play an 

essential role by providing a framework for 

analyzing the transmission dynamics of 

typhoid fever. These models allow 

researchers and policymakers to simulate 

different intervention strategies, predict 

outbreak scenarios, and assess the potential 

impact of vaccination, sanitation, and other 

control measures (11). 

Over the years, various mathematical 

models have been developed to capture the 

dynamics of typhoid transmission, each 

offering valuable insights into disease 

control. For instance, recent models (12, 

13) have incorporated vaccination and 

sanitation measures to evaluate the 

effectiveness of different strategies. Others 

focus on understanding the indirect 

protection conferred by vaccines and how 

this impacts overall transmission (14, 15). 

Such models are vital for predicting 

outbreak potential, designing control 

programs, and guiding public health 

interventions. 

Building on these previous efforts, this 

study aimed to develop a mathematical 

model that captures the dynamics of 

typhoid fever among susceptible, 

unprotected, infected, and recovered 

populations. The focus is on evaluating two 

numerical schemes: the widely used RK-4 

and NSFD scheme. Although the RK-4 

method is a common choice due to its 

simplicity and high accuracy for solving 

ordinary differential equations, it has 

certain limitations when applied to models 

of disease dynamics. Specifically, RK-4 

may fail to preserve essential qualitative 

properties of the underlying model, such as 

the non-negativity of solutions, which is 

critical since population variables (e.g., 

number of infected individuals) must 

remain positive. Additionally, RK-4 can 

struggle to maintain the boundedness and 

monotonicity of solutions, particularly 

when larger step sizes are used, potentially 

leading to inaccurate predictions of disease 

behavior. The NSFD scheme, on the other 

hand, is designed to overcome these 

limitations by ensuring that important 

dynamical properties—such as positivity, 

boundedness, and stability—are preserved, 

even with larger step sizes, thus improving 

the reliability of numerical simulations in 

capturing the true behavior of the model 

(16). 

The objectives of this study were: 1) 

evaluate the existence and stability of 

disease-free and endemic equilibrium 

points using mathematical and numerical 

methods; 2) compare the dynamic 

reliability of the RK-4 and NSFD schemes; 

and 3) validate the NSFD scheme's 

effectiveness in accurately capturing the 

dynamics of typhoid fever regardless of 

step size. By addressing these questions, the 

study aims to determine which numerical 

method best preserves the essential features 

of the original model, ensuring accurate and 

reliable predictions of disease dynamics. 

The introduction of qualitative dynamical 

numerical schemes, particularly the NSFD 

scheme pioneered by R. Mickens, 

represents a significant advancement in 

mathematical modeling. These schemes 

maintain critical features of the original 

continuous systems, aligning more closely 

with theoretical expectations than 

traditional methods like RK-4 (17). The 

NSFD scheme provides a more accurate 

and reliable representation of the original 

typhoid fever model, making it a valuable 

tool for predicting and managing disease 

spread. 
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Mathematical model and 

parameter explanations 
 

In this study, we discuss and analyze a 

deterministic model for the compass 

dynamics of typhoid disease. The model 

assumes that the total population 𝑁(𝑡) is 

divided into four categories: susceptible 

(S), exposed (E), infected (I), and recovered 

(R), such that 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) +
𝐼(𝑡) + 𝑅(𝑡). The progression follows the 

sequence 𝑆 → 𝐸 → 𝐼 → 𝑅. Following is the 

SEIR disease system, a system of nonlinear 

ordinary differential equations (17): 
𝑑𝑆

𝑑𝑡
 =  𝜑 +  𝜎𝑅 −  𝛼𝑆𝐼 −  𝜓𝑆 

(eq. 1) 
 𝑑𝐸

𝑑𝑡
 =  𝛼𝑆𝐼 −  𝜏𝐸 −  𝜓𝐸 

𝑑𝐼

𝑑𝑡
 =  𝜏𝐸 −  𝜃𝐼 −  𝜓𝐼 

𝑑𝑅

𝑑𝑡
 =  𝜃𝐼 −  𝜎𝑅 –  𝜓𝑅. 

Where the susceptible population increases 

through births or recruitment (𝜑) and from 

recovered individuals who lose 

immunity(𝜎𝑅), while it decreases due to 

disease interactions with the infected 

population (𝛼𝑆𝐼) or natural death(𝜓𝑆). The 

exposed population, infected but not yet 

infectious, grows through interactions with 

the infected (𝛼𝑆𝐼) and diminishes as 

individuals either become infectious(𝜏𝐸) or 

die (𝜓𝐸). The infected population rises as 

exposed individuals become infectious 

(𝜏𝐸) but shrinks due to recovery(𝜃𝐼), 

natural death(𝜓𝐼), or death from 

illness(𝛿𝐼). Finally, the recovered 

population grows through recovery (𝜃𝐼), 

but individuals can lose immunity and 

return to the susceptible group (𝜎𝑅) or die 

naturally (𝜓𝑅). 

Figure 1 is the SEIR model diagram which 

is illustrates the flow of individuals 

between compartments. Arrows indicate 

transitions between the different stages of 

the disease. Individuals move from 

susceptible to exposed upon interaction 

with the infected population, from exposed 

to infect when symptoms develop, and from 

infected to recover upon recovery. Some 

recovered individuals lose immunity and 

return to the susceptible class. Natural 

death occurs in each compartment. This 

flow represents the dynamics of typhoid 

fever transmission, incorporating 

recruitment, natural death, recovery, and 

immunity loss.

 

 

 
 

Figure 1: Detailed description of the epidemic model for typhoid fever transmission. 
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Parameters 

The parameters used in Model (eq. 1) are 

detailed below (Table 1). 

 

Justification for Model Structure 

The SEIR structure is chosen to capture the 

sequential nature of typhoid transmission: 

individuals move from being susceptible to 

exposed (where they are infected but not 

yet symptomatic), then to the infectious 

stage, and finally to recovery. This model 

assumes: 

 Permanent immunity is not 

conferred, hence the inclusion of a 

compartment for individuals losing 

immunity and re-entering the 

susceptible class. 

 Birth and natural death occur 

continuously in the population, 

balancing population growth and 

decay. 

 Disease-induced death affects the 

infected population, representing 

severe cases. 

These assumptions align with the biological 

progression of typhoid and allow the model 

to account for factors such as immunity loss 

and the disease’s long incubation period.

 
Table 1: Model key parameters with descriptions and sources 

 

Parameter Description Value Refere

nce 

 

 

𝝍 
 

The rate at which individuals die from natural causes. 0.02 (29) 

𝜹 
 

The rate at which infected individuals die due to the 

illness. 

0.625 (30) 

𝝋 
 

The rate of birth or entry of new individuals into the 

population. 

0.75 (19) 

𝜶 The rate at which susceptible individuals become 

exposed due to interaction with infected individuals. 

0.925 (31) 

𝝉 
 

The rate at which exposed individuals become 

infectious. 

0.0125 (28) 

𝜽 
 

The rate at which infected individuals recover and move 

to the recovered compartment. 

0.1503 (27) 

𝝈 
 

The rate at which recovered individuals lose temporary 

immunity and become susceptible again. 

0.125 (11) 

All the parameters𝝍,𝜹,𝝋,𝜶, 𝝉, 𝜽, and 𝝈 are positive real constants. 

 

Model Limitations 

This model assumes homogeneous mixing, 

meaning that all individuals have an equal 

probability of contacting others. This may 

not accurately represent real-world 

interactions where population structure and 

social behavior can influence transmission. 

Additionally, the model assumes that 

recovered individuals have temporary 

immunity, but it does not account for 

vaccination or long-term immunity. The 

effects of environmental factors, such as 

water sanitation and public health 

interventions, are also not explicitly 

included in this framework. Future work 

could explore incorporating these factors 

for a more detailed analysis of typhoid 

transmission. 

 

Equilibrium points and basic reproductive 

number 

In this section, we derive the equilibrium 

points for the model (eq. 1) and the basic 

reproductive number𝑅0 , providing the 

necessary intermediate steps and biological 

interpretations. 

 

Equilibrium points 

We consider the system of equations (eq. 1) 

and find two non-negative equilibria: the 
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disease-free equilibrium (DFE) and the 

disease-endemic equilibrium (DEE). 

1. At the disease-free equilibrium 

(DFE), there are no exposed (E), 

infectious (I), or recovered (R) 

individuals in the population, 

meaning the entire population is 

susceptible. The DFE is given by: 

𝐸0 = (𝑆0, 𝐸0, 𝐼0, 𝑅0) = (
𝜑

𝜓
, 0,0,0). 

Here, 𝑆0 =  𝜑/𝜓 represents the susceptible 

population, determined by the birth rate φ 

and the death rate ψ. The other 

compartments𝐸0, 𝐼0, and 𝑅0 are all zero 

since there is no disease present in the 

population at equilibrium. 

2. The disease-endemic equilibrium 

(DEE) occurs when the disease 

persists in the population, and all 

compartments have non-zero 

values. The endemic equilibrium 

𝐸∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) is given by: 

 

𝑆∗ =
(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)

𝛼𝜏
, 𝐸∗ =

(𝜃 + 𝛿 + 𝜓)(𝜎 + 𝜓)(𝜑𝜏𝛼 − 𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓))

𝛼𝜏(𝜎 + 𝜓)(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓) − 𝜃𝜏𝜎

𝐼∗ =
(𝜎 + 𝜓)

𝛼
(

𝜑𝜏𝛼 − 𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)

(𝜎 + 𝜓)(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓) − 𝜃𝜏𝜎
) , 𝑅∗ =

1

𝛼

(𝜃𝜑𝜏𝛼 − 𝜃𝜓((𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓))

((𝜎 + 𝜓)(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓) − 𝜃𝜏𝜎)

 

 

Basic Reproductive Number (𝑹𝟎) 

The basic reproductive number (𝑅0) is a 

crucial epidemiological metric that 

represents the average number of secondary 

infections caused by one infectious 

individual in a fully susceptible population. 

It helps to determine whether a disease will 

spread or die out in a population. To find 

the reproductive number, we use the next 

generation matrix concept from the authors 

in (18). For the model of typhoid fever 

disease (eq. 1), we can easily get 

𝑅0 =
𝛼𝜑𝜏

𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)
 

 

Implications of Equilibria for Disease 

Dynamics 

• Disease-Free Equilibrium (DFE): At 

𝑅0  <  1, the disease-free equilibrium is 

stable, meaning the disease will eventually 

be eradicated from the population. This 

scenario corresponds to effective control 

measures, such as vaccination or treatment 

that reduce 𝑅0 below 1. 

• Disease-Endemic Equilibrium (DEE): At 

𝑅0  >  1, the disease-endemic equilibrium 

is stable, indicating that the disease will 

persist in the population at a constant level. 

This suggests that interventions are 

insufficient to completely eliminate the 

disease, and it will continue to circulate 

unless more effective control measures are 

implemented. 

In the next two sections, we will compare 

the NSFD method with the well-known 

RK-4 method. We are mostly focused on 

the NSFD plan, so we will talk a lot about 

its benefits and how it is used. This text 

talks about common issues with these 

systems, such as balance points, stability, 

and positivity, especially regarding how 

increasing the time step affects them. 

Moreover, this text talks about the 

important property of unconditional 

convergence for any step size, not covered 

in previous writings. 

 

The RK-4 Method 
The RK-4 method is a popular way to solve 

systems of ordinary differential equations 

(18). For most problems, we use the RK-4 

method unless told to use something 

different. Let S be 𝑀1, E be 𝑁1, I be 𝑃1, and 

R be 𝑄1. Then, the RK-4 method can be 

shown for system (eq. 1) as described 

below.
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Step -1 
𝑀1 = ℎ[𝜑 + 𝜎𝑅𝑛 − 𝛼𝑆𝑛𝐼𝑛 − 𝜓𝑆𝑛]

𝑁1 = ℎ[𝛼𝑆𝑛𝐼𝑛 − 𝜏𝐸𝑛 − 𝜓𝐸𝑛]

𝑃1 = ℎ[𝜏𝐸𝑛 − 𝜃𝐼𝑛 − 𝛿𝐼𝑛 − 𝜓𝐼𝑛]

𝑄1 = ℎ[𝜃𝐼𝑛 − 𝜎𝑅𝑛 − 𝜓𝑅𝑛]

 

 

 

Step-2 

 

𝑀2 = ℎ [𝜑 + 𝜎 (𝑅𝑛 +
𝑄1

2
) − 𝛼 (𝑆𝑛 +

𝑀1

2
) (𝐼𝑛 +

𝑃1

2
) − 𝜓 (𝑆𝑛 +

𝑀1

2
)]

𝑁2 = ℎ [𝛼 (𝑆𝑛 +
𝑀1

2
) (𝐼𝑛 +

𝑃1

2
) − 𝜏 (𝐸𝑛 +

𝑁1

2
) − 𝜓 (𝐸𝑛 +

𝑁1

2
)]

𝑃2 = ℎ [𝜏 (𝐸𝑛 +
𝑁1

2
) − 𝜃 (𝐼𝑛 +

𝑃1

2
) − 𝛿 (𝐼𝑛 +

𝑃1

2
) − 𝜓 (𝐼𝑛 +

𝑃1

2
)]

𝑄2 = ℎ [𝜃 (𝐼𝑛 +
𝑃1

2
) − 𝜎 (𝑅𝑛 +

𝑄1

2
) − 𝜓 (𝑅𝑛 +

𝑄1

2
)]

 

 

Step-3 

 

𝑀3 = ℎ [𝜑 + 𝜎 (𝑅𝑛 +
𝑄2

2
) − 𝛼 (𝑆𝑛 +

𝑀2

2
) (𝐼𝑛 +

𝑃2

2
) − 𝜓 (𝑆𝑛 +

𝑀2

2
)]

𝑁3 = ℎ [𝛼 (𝑆𝑛 +
𝑀2

2
) (𝐼𝑛 +

𝑃2

2
) − 𝜏 (𝐸𝑛 +

𝑁2

2
) − 𝜓 (𝐸𝑛 +

𝑁2

2
)]

𝑃3 = ℎ [𝜏 (𝐸𝑛 +
𝑁2

2
) − 𝜃 (𝐼𝑛 +

𝑃2

2
) − 𝛿 (𝐼𝑛 +

𝑃2

2
) − 𝜓 (𝐼𝑛 +

𝑃2

2
)]

𝑄3 = ℎ [𝜃 (𝐼𝑛 +
𝑃2

2
) − 𝜎 (𝑅𝑛 +

𝑄2

2
) − 𝜓 (𝑅𝑛 +

𝑄2

2
)]

 

 

Step-4 

 
𝑀4 = ℎ[𝜑 + 𝜎(𝑅𝑛 + 𝑄3) − 𝛼(𝑆𝑛 + 𝑀3)(𝐼𝑛 + 𝑃3) − 𝜓(𝑆𝑛 + 𝑀3)]

𝑁4 = ℎ[𝛼(𝑆𝑛 + 𝑀3)(𝐼𝑛 + 𝑃3) − 𝜏(𝐸𝑛 + 𝑁3) − 𝜓(𝐸𝑛 + 𝑁3)]

𝑃4 = ℎ[𝜏(𝐸𝑛 + 𝑁3) − 𝜃(𝐼𝑛 + 𝑃3) − 𝛿(𝐼𝑛 + 𝑃3) − 𝜓(𝐼𝑛 + 𝑃3)]
 

𝑄4 = ℎ[𝜃(𝐼𝑛 + 𝑃3) − 𝜎(𝑅𝑛 + 𝑄3) − 𝜓(𝑅𝑛 + 𝑄3)] 
 

 

Hence, the common system is 

 
𝑦𝑛+1 = 𝑦𝑛 + Δ𝑦

𝑆𝑛+1 = 𝑆𝑛 +
1

6
{𝑀1 + 2𝑀2 + 2𝑀3 + 𝑀4}

𝐸𝑛+1 = 𝐸𝑛 +
1

6
{𝑁1 + 2𝑁2 + 2𝑁3 + 𝑁4}

𝐼𝑛+1 = 𝐼𝑛 +
1

6
{𝑃1 + 2𝑃2 + 2𝑃3 + 𝑃4}

𝑅𝑛+1 = 𝑅𝑛 +
1

6
{𝑄1 + 2𝑄2 + 2𝑄3 + 𝑄4}
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Figure 2: Numerical simulation of the SEIR model (eq. 1) via the RK-4 scheme with (a) h=0.05, (b) 

h= 0.5, (c) h=1.2, (d) h=2.5. The other parameters remain fixed as φ=0.75, α=0.0125, τ=0.925, 

ψ=0.02, θ=0.1503, δ=0.625, σ=0.125. 
 

A picture showing the RK-4 method is 

displayed with various step sizes in the 

Figure 2. As "2 (a-d)" does not give me 

enough information. Figure 2 (a, b) shows 

that the RK-4 method gives good and 

steady results when using small step sizes. 

When we make the step size bigger, the 

stability of the balance point is lost for 

Model (eq. 1). Therefore, the RK-4 method 

won't work well with big step sizes. 

 

The NSFD Scheme 

In this part, we want to talk about how the 

NSFD plan works for Model (eq. 1). The 

NSFD scheme is a step-by-step method 

where we get closer to an answer by 

repeating the process several times (19). 

The NSFD scheme idea was introduced by 

Mickens (20). The NSFD method is a 

useful way to tackle issues in studying 

diseases, the environment, and groups of 

connected populations (21). In the 

following, we will demonstrate that no 

matter the size of the step (h), the discrete 

NSFD method keeps all the important 

behavior of the related continuous model 

(eq. 1). 

 

Building the NSFD Plan 

In model (eq. 1), we use𝑆𝑛, 𝐸𝑛, 𝐼𝑛, and 𝑅𝑛 

to represent the calculated values of 

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) at specific times 

𝑡 = 𝑛ℎ, where n can be 0, 1, 2, 3, and so on. 

Here, h is the time step, which should be a 

positive number or zero (22). 

𝑠𝑛+1 − 𝑆𝑛 = ℎ(𝜑 + 𝜎𝑅𝑛 − 𝛼𝑆𝑛+1𝐼𝑛 − 𝜓𝑆𝑛+1)

𝐸𝑛+1 − 𝐸𝑛 = ℎ(𝛼𝑆𝑛+1𝐼𝑛 − 𝜏𝐸𝑛+1 − 𝜓𝐸𝑛+1)

𝑅𝑛+1 − 𝑅𝑛 = ℎ(𝜃𝐼𝑛+1 − 𝜎𝑅𝑛+1 − 𝜓𝑅𝑛+1).

                        (𝑒𝑞. 2) 

The initial values of the discrete NSFD 

SEIR model (eq. 2) are all zero or positive, 

meaning 𝑆0, 𝐸0, 𝐼0 and 𝑅0 are greater than 

or equal to 0. You can find the clear version 
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of the discrete NSFD method (eq. 2) by 

getting it in this way: 

𝑆𝑛+1 =
𝑆𝑛 + ℎ𝜑 + ℎ𝛼𝑅𝑛

1 + ℎ(𝛼𝐼𝑛 + 𝜓)

𝐸𝑛+1 =
𝐸𝑛 + ℎ𝛼𝑆𝑛+1𝐼𝑛
1 + ℎ𝜓 + ℎ𝜏

𝑅𝑛+1 =
𝑅𝑛 + ℎ𝜃𝐼𝑛+1

1 + ℎ𝜎 + ℎ𝜓
.

                          (𝑒𝑞. 3) 

Next, we explain when the DFE and DEE 

points are stable or unstable for the discrete 

NSFD method. To reach this goal, we will 

first talk about how stable each of the 

balance points is. 

 

Analyzing Local Stability for the Discrete 

NSFD Method 

To show that the DFE and DEE points are 

locally stable (locally asymptotically steady 

LAS), we look at

 

𝑆𝑛+1 =
𝑆𝑛 + ℎ𝜑 + ℎ𝛼𝑅𝑛

1 + ℎ(𝛼𝐼𝑛 + 𝜓)
= 𝐹1

𝐸𝑛+1 =
𝐸𝑛 + ℎ𝛼𝑆𝑛+1𝐼𝑛
1 + ℎ(𝜓 + 𝜏)

= 𝐹2                               (𝑒𝑞. 4)

𝑅𝑛+1 =
𝑅𝑛 + ℎ𝜃𝐼𝑛+1

1 + ℎ(𝜎 + 𝜓)
= 𝐹4.

 

 

To prove that the DFE and DEE points are 

LAS, we apply the Schur-Cohn rule (22) 

mentioned in Lemma 1. 

 

Explanation 
The Schur-Cohn rule is used to ensure that 

the equilibrium points are stable. It applies 

to the discrete system and guarantees that 

all eigenvalues of the Jacobian matrix have 

magnitudes less than 1. This ensures local 

asymptotic stability. 

Lemma 1: The answers to the equation 

𝜆2 − 𝑇𝜆 + 𝐷 = 0 will be less than 1 for 

(|𝜆𝑖| < 1, 𝑖 = 1,2) if and only if certain 

conditions are met. 

1. 𝐷 < 1, 

2. 1 + 𝐷 + 𝑇 > 0, 

3. 1 − 𝑇 + 𝐷 > 0, 

where D and T signify the determinant and 

follow of the Jacobian lattice, individually. 

Theorem 1: In the event that 𝑅0 < 1, at that 

point the DFE point 𝐸0 of the NSFD 

conspire (eq. 3) is the LAS for all ℎ > 0. 

Proof: Let us consider the Jacobian matrix 

 

𝐽(𝑆, 𝐸, 𝐼, 𝑅) =

[
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝑆

𝜕𝐹1

𝜕𝐸

𝜕𝐹1

𝜕𝐼

𝜕𝐹1

𝜕𝑅
𝜕𝐹2

𝜕𝑆

𝜕𝐹2

𝜕𝐸

𝜕𝐹2

𝜕𝐼

𝜕𝐹2

𝜕𝑅
𝜕𝐹3

𝜕𝑆

𝜕𝐹3

𝜕𝐸

𝜕𝐹3

𝜕𝐼

𝜕𝐹3

𝜕𝑅
𝜕𝐹4

𝜕𝑆

𝜕𝐹4

𝜕𝐸

𝜕𝐹4

𝜕𝐸

𝜕𝐹4

𝜕𝑅 ]
 
 
 
 
 
 
 
 

. (𝑒𝑞. 5) 

 

As the below, we calculate all partial derivatives in (eq. 5): 
∂𝐹1

∂𝑆
=

1

1 + ℎ(𝛼𝐼𝑛 + 𝜓)
,
∂𝐹1

∂𝐸
= 0,

∂𝐹1

∂𝐼
=

−ℎ𝛼(𝑆𝑛 + ℎ𝜑 + ℎ𝛼𝑅𝑛+1)

(1 + ℎ(𝛼𝐼𝑛 + 𝜓))
2 ,

∂𝐹1

∂𝑅

=
ℎ𝛼

1 + ℎ(𝛼𝐼𝑛 + 𝜓)
,
∂𝐹2

∂𝑆
=

ℎ𝛼𝐼𝑛
1 + ℎ𝜓 + ℎ𝜏

,
∂𝐹2

∂𝐸
= 
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1

1 + ℎ(𝜓 + 𝜏)
,
∂𝐹2

∂𝐼
=

ℎ𝛼𝑆𝑛+1

1 + ℎ(𝜓 + 𝜏)
,
∂𝐹2

∂𝑅
= 0,

∂𝐹3

∂𝑆
= 0,

∂𝐹3

∂𝐸
=

ℎ𝜏

1 + ℎ(𝜃 + 𝛿 + 𝜓)
,
∂𝐹3

∂𝐼

=
1

1 + ℎ(𝜃 + 𝛿 + 𝜓)
,
∂𝐹3

∂𝑅
= 0,

∂𝐹4

∂𝑆
= 0,

∂𝐹4

∂𝐸
= 

0,
∂𝐹4

∂𝐼
=

ℎ𝜃

1+ℎ(𝜎+𝜓)
,
∂𝐹4

∂𝑅
=

1

1+ℎ(𝜎+𝜓)
. 

Putting the values of all partial derivatives in (eq. 5), we get 

𝐽 =

[
 
 
 
 
 
 

1

1+ℎ(𝛼𝐼𝑛+𝜓)
0

−ℎ𝛼(𝑆𝑛+ℎ𝜑+ℎ𝛼𝑅𝑛+1)

(1+ℎ(𝛼𝐼𝑛+𝜓))
2

ℎ𝛼

1+ℎ(𝛼𝐼𝑛+𝜓)

ℎ𝛼𝐼𝑛

1+ℎ𝜓+ℎ𝜏

1

1+ℎ(𝜓+𝜏)

ℎ𝛼𝑆𝑛+1

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓) ]
 
 
 
 
 
 

. 

At DFE point 𝐸0 = (
𝜑

𝜓
, 0,0,0), the Jacobian changes to:  

𝐽(𝐸0) =

[
 
 
 
 
 
 
 1

1+ℎ𝜓
0

−ℎ𝛼(
𝜑

𝜓
+ℎ𝜑)

(1+ℎ𝜓)2
ℎ𝛼

1+ℎ𝜓

0
1

1+ℎ(𝜓+𝜏)

ℎ𝛼
𝜑

𝜓

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓)]
 
 
 
 
 
 
 

. 

To calculate the eigenvalues, we consider 

|

|

|

1

1+ℎ𝜓
− 𝜆 0

−ℎ𝛼(
𝜑

𝜓
+ℎ𝜑)

(1+ℎ𝜓)2
ℎ𝛼

1+ℎ𝜓

0
1

1+ℎ(𝜓+𝜏)
− 𝜆

ℎ𝛼
𝜑

𝜓

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
− 𝜆 0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓)
− 𝜆

|

|

|

= 0. 

This equation can be written as:  

(
1

1 + ℎ𝜓
− 𝜆) (

1

1 + ℎ(𝜎 + 𝜓)
− 𝜆)

|
|

1

1 + ℎ(𝜓 + 𝜏)
− 𝜆

ℎ𝛼
𝜑
𝜓

1 + ℎ(𝜓 + 𝜏)

ℎ𝜏

1 + ℎ(𝜃 + 𝛿 + 𝜓)

1

1 + ℎ(𝜃 + 𝛿 + 𝜓)
− 𝜆

|
|
= 0. (eq.  6) 

Equation (eq. 6) yields 𝜆1 =
1

1+ℎ𝜓
< 1 and 𝜆2 =

1

1+ℎ(𝜎+𝜓)
< 1. To calculate the other two 

eigenvalues, we solve the following equation 

|

1

1+ℎ(𝜓+𝜏)
− 𝜆

ℎ𝛼
𝜑

𝜓

1+ℎ(𝜓+𝜏)

ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
− 𝜆

| = 0. 

The below quadratic equation is obtained from solving the above equation: 

𝜆2 − 𝜆 (
1

1+ℎ(𝜓+𝜏)
+

1

1+ℎ(𝜃+𝛿+𝜓)
) +

1

(1+ℎ(𝜃+𝛿+𝜓))(1+ℎ(𝜓+𝜏))
−

ℎ𝛼𝜑

𝜓(1+ℎ(𝜓+𝜏))(1+ℎ(𝜃+𝛿+𝜓))
= 0. (eq. 7)  
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Comparing (7) with 𝜆2 − 𝑇𝜆 + 𝐷 = 0, we obtain 𝑇 =
1

1+ℎ(𝜓+𝜏)
+

1

1+ℎ(𝜃+𝛿+𝜓)
 and 𝐷 =

1

(1+ℎ(𝜃+𝛿+𝜓))(1+ℎ(𝜓+𝜏))
−

ℎ𝛼𝜑

𝜓(1+ℎ(𝜓+𝜏))(1+ℎ(𝜃+𝛿+𝜓))
. If 𝑅0 < 1, i.e., 𝛼𝜑𝜏 < 𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 +

𝜓), then all three conditions of Lemma 1 are satisfied. 

1. 𝐷 =
1

(1+ℎ(𝜃+𝛿+𝜓)(1+ℎ(𝜓+𝜏))
+

ℎ𝛼𝜑

𝜓(1+ℎ(𝜓+𝜏))(1+ℎ(𝜃+𝛿+𝜓))
 < 1. 

2. 1 + 𝑇 + 𝐷 = 1 +
1

1+ℎ(𝜓+𝜏)
+

1

1+ℎ(𝜃+𝛿+𝜓)
+

1

(1+ℎ(𝜃+𝛿+𝜓)(1+ℎ(𝜓+𝜏))
−

ℎ𝛼𝜑

𝜓(1+ℎ(𝜓+𝜏))(1+ℎ(𝜃+𝛿+𝜓))
. > 0. 

3. 1 − 𝑇 + 𝐷 = 1 −
1

1+ℎ(𝜓+𝜏)
−

1

1+ℎ(𝜃+𝛿+𝜓)
+

1

(1+ℎ(𝜃+𝛿+𝜓)(1+ℎ(𝜓+𝜏))
−

ℎ𝛼𝜑

𝜓(1+ℎ(𝜓+𝜏))(1+ℎ(𝜃+𝛿+𝜓))
> 0. 

 

Therefore, all the requirements for the 

Schur-Cohn rule mentioned in Lemma 1 are 

met whenever 𝑅0 is less than 1. The DFE 

point 𝐸0 of the discrete NSFD scheme (eq. 

3) is the LAS if 𝑅0 is less than 1. 

 

Explanation 

The Schur-Cohn rule is used to ensure that 

the equilibrium points are stable. It applies 

to the discrete system and guarantees that 

all eigenvalues of the Jacobian matrix have 

magnitudes less than 1. This ensures local 

asymptotic stability. 

When a disease is common in a community, 

it will always be present among the people 

there. In the next theorem, we use the 

Routh-Hurwitz rule (23) to show that the 

DEE point E* is LAS. 

Theorem 2: If 𝑅0 is greater than 1, then the 

point 𝐸∗ in the NSFD model (eq. 3) is the 

LAS for any positive value of h. 

Proof: Let's look at the Jacobian matrix. 

 

𝐽(𝑆, 𝐸, 𝐼, 𝑅) =

[
 
 
 
 
 
 
 
 
∂𝐹1

∂𝑆

∂𝐹1

∂𝐸

∂𝐹1

∂𝐼

∂𝐹1

∂𝑅
∂𝐹2

∂𝑆

∂𝐹2

∂𝐸

∂𝐹2

∂𝐼

∂𝐹2

∂𝑅
∂𝐹3

∂𝑆

∂𝐹3

∂𝐸

∂𝐹3

∂𝐼

∂𝐹3

∂𝑅
∂𝐹4

∂𝑆

∂𝐹4

∂𝐸

∂𝐹4

∂𝐸

∂𝐹4

∂𝑅 ]
 
 
 
 
 
 
 
 

. (eq. 8) 

By applying all the partial derivatives from Theorem 1 with (eq. 8), we get 

𝐽 =

[
 
 
 
 
 
 

1

1+ℎ(𝛼𝐼𝑛+𝜓)
0

−ℎ𝛼(𝑆𝑛+ℎ𝜑+ℎ𝛼𝑅𝑛+1)

(1+ℎ(𝛼𝐼𝑛+𝜓))
2

ℎ𝛼

1+ℎ(𝛼𝐼𝑛+𝜓)

ℎ𝛼𝐼𝑛

1+ℎ(𝜓+𝜏)

1

1+ℎ(𝜓+𝜏)

ℎ𝛼𝑆𝑛+1

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓) ]
 
 
 
 
 
 

. 

By putting the DEE point 𝐸∗, we get 
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𝐽(𝐸∗) =

[
 
 
 
 
 
 

1

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)
0

−ℎ𝛼(𝑆∗ 𝑛+ℎ𝜑+ℎ𝛼𝑅∗ 𝑛+1)

(1+ℎ(𝛼𝐼∗ 𝑛+𝜓))
2

ℎ𝛼

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)

ℎ𝛼𝐼∗ 𝑛

1+ℎ𝜓+ℎ𝜏

1

1+ℎ(𝜓+𝜏)

ℎ𝛼𝑆∗ 𝑛+1

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓) ]
 
 
 
 
 
 

. 

Now we calculate the eigenvalues:  

|

|

1

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)
− 𝜆 0

−ℎ𝛼(𝑆∗+ℎ𝜑+ℎ𝛼𝑅∗ 𝑛+1)

(1+ℎ(𝛼𝐼∗ 𝑛+𝜓))
2

ℎ𝛼

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)

ℎ𝛼𝐼∗ 𝑛

1+ℎ𝜓+ℎ𝜏

1

1+ℎ(𝜓+𝜏)
− 𝜆

ℎ𝛼𝑆∗ 𝑛+1

1+ℎ(𝜓+𝜏)
0

0
ℎ𝜏

1+ℎ(𝜃+𝛿+𝜓)

1

1+ℎ(𝜃+𝛿+𝜓)
− 𝜆 0

0 0
ℎ𝜃

1+ℎ(𝜎+𝜓)

1

1+ℎ(𝜎+𝜓)
− 𝜆

|

|

= 0. 

The characteristic equation for the equation mentioned above is 

𝜆4 + 𝑃1𝜆
3 + 𝑃2𝜆

2 + 𝑃3𝜆 + 𝑃4 = 0, (eq. 9) 

where 

𝑃1 =
1

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)
+

1

1+ℎ(𝜓+𝜏)
+

1

1+ℎ(𝜃+𝛿+𝜓)
+

1

1+ℎ(𝜎+𝜓)
> 0

𝑃2 =
1

(1+ℎ(𝜃+𝛿+𝜓))(1+ℎ(𝜏+𝜓))
−

ℎ2𝜏𝛼𝑆𝑛+1
∗

(1+ℎ(𝜏+𝜓))(1+ℎ(𝜃+𝛿+𝜓))
−

(
1

1+ℎ(𝛼𝐼∗ 𝑛+𝜓)
+

1

1+ℎ(𝜎+𝜓)
) (

1

(1+ℎ(𝜃+𝛿+𝜓))(1+ℎ(𝜏+𝜓))
) +

1

(1+ℎ(𝛼𝐼∗ 𝑛+𝜓))(1+ℎ(𝜎+𝜓))
> 0

  

𝑃3 =
1

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))
+

1

(1+ℎ(𝜎+𝜓))(1+ℎ(𝜏+𝜓))(1+ℎ(𝜃+𝛿+𝜓)
+

ℎ2𝜏𝛼𝑆𝑛+1
∗

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))(1+ℎ(𝜎+𝜓))(1+ℎ(𝜏+𝜓))(1+ℎ(𝜃+𝛿+𝜓)
+

ℎ2𝜏𝛼

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))(1+ℎ(𝛼𝑙∗ 𝑛+𝜓)2
+

1

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))(1+ℎ(𝜎+𝜓))(1+ℎ(𝜏+𝜓))(1+ℎ(𝜃+𝛿+𝜓)
> 0,

𝑃4 =
ℎ2𝜏𝛼(𝑆∗ 𝑛+ℎ𝜑+ℎ𝛼𝑅∗ 𝑛)

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓)(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))
2
(1+ℎ(𝜎+𝜓))

+
ℎ3𝜏𝛼𝜃

(1+ℎ(𝜎+𝜓))(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))
+

1

(1+ℎ(𝛼𝑙∗ 𝑛+𝜓))(1+ℎ(𝜎+𝜓))(1+ℎ(𝜏+𝜓))(1+ℎ(𝜃+𝛿+𝜓))
.

  

Using the information given above, if 𝑅0 is greater than 1, then. 
𝑀1 = 𝑃1 > 0

𝑀2 = 𝑃1𝑃2 − 𝑃3 > 0

𝑀3 = |

𝑃1 𝑃3 0
1 𝑃2 𝑃4

0 𝑃1 𝑃3

| = −𝑃3
2 + 𝑃1𝑃2𝑃3 − 𝑃1

2𝑃4 = 𝑃3𝑀2 − 𝑃1
2𝑃4 > 0

𝑀4 = 𝑃4𝑀3 > 0.

 

 

Therefore, when we use the Routh–Hurwitz 

method, all the solutions to the 

characteristic equation need to have 

negative real parts. When 𝑅0 is greater than 

1, the DEE point 𝐸∗ of the discrete NSFD 

scheme (eq. 3) is the LAS. 

 

Analyzing Global Stability for the Discrete 

NSFD Method 

Next, we will explain that 𝑅0 is the 

equilibria value for stability. If 𝑅0 is less 

than or equal to 1, then the point 𝐸0 is 

globally asymptotically stable (GAS). If 𝑅0 

is greater than 1, then the point 𝐸∗ becomes 

the GAS point. To talk about the global 
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stability of equilibria, we use the same 

standard that Vaz and colleagues used (24).  

Theorem 3: If 𝑅0 is less than or equal to 1, 

then the DFE point 𝐸0 of the NSFD model 

(eq. 3) is globally asymptotically stable for 

all positive values of ℎ. 

Proof: Let 𝜂 be a number greater than 0. 

Then, there is an integer 𝑛0 such that for 

any n that is equal to or greater than 𝑛0, 

𝑆𝑛+1 <
𝜑

𝜓
+ 𝜂. Let's look at the sequence 

𝑤(𝑛) starting from 𝑛 equals 0 and going to 

infinity.

 

𝑤(𝑛) = 𝐸𝑛 +
𝜔

𝐶3
𝐼𝑛 +

𝛼

𝐶2
𝑅𝑛 + ℎ𝛼𝑆𝑛+1𝐼𝑛 

where 𝐶2 = (𝜎 + 𝜓) and 𝐶3 = (𝜃 + 𝛿 + 𝜓). For 𝑛 ≥ 𝑛0, we have  

𝑤(𝑛 + 1) − 𝑤(𝑛)

= 𝐸𝑛+1 +
𝜔

𝐶3
𝐼𝑛+1 +

𝛼

𝐶2
𝑅𝑛+1 + ℎ𝛼𝑆𝑛+2𝐼𝑛+1 − 𝐸𝑛 −

𝜔

𝐶3
𝐼𝑛 −

𝛼

𝐶2
𝑅𝑛

− ℎ𝛼𝑆𝑛+1𝐼𝑛 

 = (𝐸𝑛+1 − 𝐸𝑛) +
𝜔

𝐶3
𝐼𝑛+1 +

𝛼

𝐶2
𝑅𝑛+1 + ℎ𝛼𝑆𝑛+2𝐼𝑛+1 −

𝜔

𝐶3
𝐼𝑛 −

𝛼

𝐶2
𝑅𝑛 − ℎ𝛼𝑆𝑛+1𝐼𝑛

 = (𝐸𝑛+1 − 𝐸𝑛) +
𝜔

𝑐3

(𝐼𝑛+1 − 𝐼𝑛) +
𝛼

𝑐2

(𝑅𝑛+1 − 𝑅𝑛) + ℎ𝛼𝑆𝑛+2𝐼𝑛+1 − ℎ𝛼𝑆𝑛+1𝐼𝑛

 

Using the NSFD model (eq. 3), we get 

=ℎ(𝛼𝑆𝑛+1𝐼𝑛 − (𝜏 + 𝜓)𝐸𝑛+1) +
𝜔

𝑐3
ℎ(𝜏𝐸𝑛+1 − (𝜃 + 𝛿 + 𝜓)𝐼𝑛+1) +

𝛼

𝑐2
ℎ(𝜃𝐼𝑛+1 −

(𝜎 + 𝜓)𝑅𝑛+1) + ℎ𝛼𝑆𝑛+2𝐼𝑛+1 − ℎ𝛼𝑆𝑛+1𝐼𝑛.
 

Let 𝐶1 = (𝜏 + 𝜓); So, it turns into this: 

=ℎ (𝛼𝑆𝑛+2𝐼𝑛 +
𝜔

𝐶3

(𝜏𝐸𝑛+1 − (𝜃 + 𝛿 + 𝜓)𝐼𝑛+1) +
𝛼

𝑐2

(𝜃𝐼𝑛+1 − (𝜎 + 𝜓)𝑅𝑛+1) −

𝐶1𝐸𝑛+1))

=ℎ (𝛼𝑆𝑛+2𝐼𝑛 + (
𝜔𝜏

𝐶3
− 𝐶1)𝐸𝑛+1 +

𝛼

𝐶2
𝜃𝐼𝑛+1 −

𝜔

𝐶3

(𝜃 + 𝛿 + 𝜓)𝐼𝑛+1 − (𝜎 + 𝜓)𝑅𝑛+1)

=ℎ (𝛼𝑆𝑛+2𝐼𝑛 + (𝜔𝜏 − 𝐶1𝐶3)
𝐸𝑛+1

𝐶3
+ (

𝛼𝜃

𝑐2
−

𝜔

𝑐3

(𝜃 + 𝛿 + 𝜓)) 𝐼𝑛+1 − (𝜎 + 𝜓)𝑅𝑛+1) .

 

 
Figure 3: Numerical simulation of the SEIR model (1) via the NSFD scheme with (a) h=0.05, (b) 

h=0.5, (c)h=25, (d)h=50. The other parameters remain fixed as φ=0.75, α=0.0125, τ=0.925, ψ=0.02, 

θ=0.1503, δ=0.625, σ=0.125. 
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If we pick 𝐶1𝐶3 − 𝜔𝜏 = 𝐷, the above expression changes to 

= ℎ ((𝛼𝑆𝑛+2𝐼𝑛 − 𝐷
𝐸𝑛+1

𝐶3
) − (𝜃 + 𝛿 + 𝜓)𝐼𝑛+1 − (𝜎 + 𝜓)𝑅𝑛+1). 

We can pick 𝛽 to be a very small positive number so that 
𝛼𝑆𝑛+2𝐼𝑛 ≤ 𝛽(𝐸𝑛+1 + 𝐶3𝐼𝑛+1 + 𝐶2𝑅𝑛+1)

 = 𝛽 (𝐸𝑛+1 + 𝐶3

𝜏

𝐶3
𝐸𝑛+1 + 𝐶2

𝐸𝑛+1

𝐶2𝐶3
) .

 

Therefore, we obtain 

𝑤(𝑛 + 1) − 𝑤(𝑛) ≤ ℎ (𝛽 (𝐸𝑛+1 + 𝜏𝐸𝑛+1 +
𝐸𝑛+1

𝐶3
) − 𝐷

𝐸𝑛+1

𝐶3
) 

 ≤
ℎ𝐸𝑛+1

𝐶3
(𝛽 + 𝛽

𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)

𝛼𝜑

𝛼𝜑𝜏

𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)
+ 𝛽 − 𝐷)

 ≤
ℎ𝐸𝑛+1

𝐶3
(𝛽 + 𝛽

𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)

𝛼𝜑
𝑅0 + 𝛽 − 𝐷)

 =
ℎ𝐸𝑛+1

𝐶3
(2𝛽 +

𝛽𝜓(𝜏 + 𝜓)(𝜃 + 𝛿 + 𝜓)

𝛼𝜑
𝑅0 − 𝐷) .

 

If 𝐶 =
𝜓(𝜏+𝜓)(𝜃+𝛿+𝜓)

𝛼𝜑
; then, we receive  

 =
ℎ𝐸𝑛+1

𝐶3

(2𝛽 + 𝐶𝛽𝑅0 − 𝐷)

 =
ℎ𝐸𝑛+1

𝐶3

(𝛽(2 + 𝐶𝑅0) − 𝐷).

 

 

Since β is a really small number and 𝜂 is not 

exact, if 𝑅0 is less than or equal to 1, we can 

conclude that 𝑤(𝑛 + 1) − 𝑤(𝑛) is less than 

or equal to 0, and as 𝑛 gets very large, 𝐼𝑛 

approaches 0 for any 𝑛 ≥ 0. The sequence 

𝑤(𝑛) from 𝑛 = 0 to infinity decreases 

steadily, and the limit of 𝑆𝑛 as 𝑛 approaches 

infinity is 𝜑/𝜓. So, when 𝑅0 is less than or 

equal to 1, the DFE point 𝐸0 is the GAS 

point (25, 26). 

The numerical solution shown in the Figure 

3 (a-d) also show that if 𝑅0 is less than or 

equal to 1, then the results from the NSFD 

method (eq. 3) get closer to the DFE point 

regardless of the step size. The discrete 

NSFD method always gets closer to the 

solution for Model (eq. 1). 

Theorem 4: If 𝑅0 is greater than 1, then the 

DEE point 𝐸∗ of the NSFD model (eq. 3) is 

GAS for any positive value of ℎ. 

 

Proof: Let's create a sequence 𝑤(𝑛) from 𝑛 = 0 to infinity in the following way: 

𝑤(𝑛) =
1

ℎ𝐸∗
𝑝 (

𝑆𝑛

𝑆∗
) +

1

ℎ𝑆∗
𝑝 (

𝐸𝑛

𝐸∗
) +

𝜔𝐼∗

ℎ𝐶3𝑆∗𝐸∗
𝑝 (

𝐼𝑛

𝐼∗
) +

𝛼𝑅∗

ℎ𝐶2𝑆∗𝐸∗
𝑝 (

𝑅𝑛

𝑅∗
), 

as 𝑝(𝑥) = 𝑥 − 1 − 𝑙 𝑛(𝑥) for 𝑥 ∈ 𝑅+, 𝐶2 = 𝜎 + 𝜓 and 𝐶3 = 𝜃 + 𝛿 + 𝜓. It is obvious that 

𝑝(𝑥) ≥ 0, and the equality stay true if 𝑥 = 1. We can result  
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𝑝 (
𝑆𝑛+1

𝑆∗
) − 𝑝 (

𝑆𝑛

𝑆∗
)=

𝑠𝑛+1 − 𝑆𝑛

𝑆∗
− 𝑙 𝑛 (

𝑠𝑛+1

𝑆𝑛
)

 ≤
(𝑆𝑛+1 − 𝑆∗)(𝑆𝑛+1 − 𝑆𝑛)

𝑆𝑛+1𝑆∗

 =
(𝑆𝑛+1 − 𝑆∗)

𝑆𝑛+1𝑆∗
ℎ(𝜑 + 𝜎𝑅𝑛 − 𝛼𝑆𝑛+1𝐼𝑛 − 𝜓𝑆𝑛+1)

 =
(𝑆𝑛+1 − 𝑆∗)

𝑆𝑛+1𝑆∗
ℎ(𝛼𝑆∗𝐼∗ + 𝜓𝑆∗ − 𝜎𝑅𝑛 − 𝛼𝑆𝑛+1𝐼𝑛 − 𝜓𝑆𝑛+1)

 = ℎ((𝑆𝑛+1 − 𝑆∗)(−𝜓(𝑆𝑛+1 − 𝑆∗) − 𝛼𝑆𝑛+1𝐼𝑛 + 𝛼𝑆∗𝐼∗ − 𝜎𝑅𝑛)

 

 = ℎ ((𝑆𝑛+1 − 𝑆∗) (−𝜓(𝑆𝑛+1 − 𝑆∗) − 𝛼 (
𝑆𝑛+1𝐼𝑛
𝐼∗𝑆∗

− 1) − 𝜎𝑅𝑛)

 =
−𝜓ℎ(𝑠𝑛+1 − 𝑆∗)2

𝑠𝑛+1𝑆∗
− ℎ (𝛼 (1 −

𝑆∗

𝑠𝑛+1
) (

𝐼𝑛
𝐼∗

𝑠𝑛+1

𝑆∗
− 1) − 𝜎𝑅𝑛) .

 

In the same method, 

𝑝 (
𝐸𝑛+1

𝐸∗
) − 𝑝 (

𝐸𝑛

𝐸∗
)=

𝐸𝑛+1 − 𝐸𝑛

𝐸∗
− 𝑙 𝑛 (

𝐸𝑛+1

𝐸𝑛
)

 ≤
(𝐸𝑛+1 − 𝐸∗)(𝐸𝑛+1 − 𝐸𝑛)

𝐸𝑛+1𝐸∗

 =
(𝐸𝑛+1 − 𝐸∗)

𝐸𝑛+1𝐸∗
(𝛼𝑆𝑛+1𝐼𝑛 − 𝜏𝐸𝑛+1 − 𝜓𝐸𝑛+1)

 =
(𝐸𝑛+1 − 𝐸∗)

𝐸𝑛+1𝐸∗
(𝛼𝑆𝑛+1𝐼𝑛 − (𝜏 + 𝜓)𝐸𝑛+1).

 

If 𝐶1 = 𝜏 + 𝜓; then, 

𝑝 (
𝐸𝑛+1

𝐸∗
) − 𝑝 (

𝐸𝑛

𝐸∗
) ≤

(𝐸𝑛+1 − 𝐸∗)

𝐸𝑛+1𝐸∗
(𝛼𝑆𝑛+1𝐼𝑛 − 𝐶1𝐸𝑛+1)

 =
(𝐸𝑛+1 − 𝐸∗)

𝐸𝑛+1𝐸∗
(𝛼𝑆𝑛+1𝐼𝑛 −

𝐸𝑛+1𝛼𝑆∗

𝐸∗
)

 = (1 −
𝐸∗

𝐸𝑛+1
)
ℎ𝛼𝑆∗

𝐸∗
(
𝐼𝑛
𝐼∗

𝑆𝑛+1

𝑆∗
−

𝐸𝑛+1

𝐸∗
) .

 

and 

𝑝 (
𝐼𝑛+1

𝐼∗
) − 𝑝 (

𝐼𝑛
𝐼∗

)=
𝐼𝑛+1 − 𝐼𝑛

𝐼∗
− 𝑙 𝑛 (

𝐼𝑛+1

𝐼𝑛
)

 ≤
(𝐼𝑛+1 − 𝐼∗)(𝐼𝑛+1 − 𝐼𝑛)

𝐼𝑛+1𝐼∗

 ≤
(𝐼𝑛+1 − 𝐼∗)

𝐼𝑛+1𝐼∗
(𝜏𝐸𝑛+1 − (𝜃 + 𝛿 + 𝜓)𝐼𝑛+1

 ≤
(𝐼𝑛+1 − 𝐼∗)

𝐼𝑛+1𝐼∗
(𝜏𝐸𝑛+1 − 𝐶3𝐼𝑛+1)

 = 𝐶3ℎ (1 −
𝐼∗

𝐼𝑛+1
) (

𝐸𝑛+1

𝐸∗
−

𝐼𝑛+1

𝐼∗
) .
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Figure 4: Numerical simulation of the SEIR model (1) via the NSFD scheme with (a)h=0.01, (b)h= 1, 

(c)h=50, (d)h=60. The other parameters remain fixed as φ=4.5, α=0.0125, τ=0.099925, ψ=0.02, 

θ=0.1503, δ=0.625, σ=0.125. 

 

and 

𝑝 (
𝑅𝑛+1

𝑅∗
) − 𝑝 (

𝑅𝑛

𝑅∗
)=

𝑅𝑛+1 − 𝑅𝑛

𝑅∗
− 𝑙 𝑛 (

𝑅𝑛+1

𝑅𝑛
)

 ≤
(𝑅𝑛+1 − 𝑅∗)(𝑅𝑛+1 − 𝑅𝑛)

𝑅𝑛+1𝑅∗

 ≤
(𝑅𝑛+1 − 𝑅∗)

𝑅𝑛+1𝑅∗
(𝜃𝐼𝑛+1 − (𝜎 + 𝜓)𝑅𝑛+1)

 ≤
(𝑅𝑛+1 − 𝑅∗)

𝑅𝑛+1𝑅∗
(𝜃𝐼𝑛+1 − 𝐶2𝑅𝑛+1)

 = 𝐶2ℎ (1 −
𝑅∗

𝑅𝑛+1
) (

𝐼𝑛+1

𝐼∗
−

𝑅𝑛+1

𝑅∗
) .

 

The change in 𝑤(𝑛) meets the condition. 
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𝑤(𝑛 + 1) − 𝑤(𝑛) =
1

ℎ𝐸∗
(𝑝 (

𝑆𝑛+1

𝑆∗
) − 𝑝 (

𝑆𝑛

𝑆∗
)) +

1

ℎ𝑆∗
(𝑝 (

𝐸𝑛+1

𝐸∗
) − 𝑝 (

𝐸𝑛

𝐸∗
))

 +
𝜔𝐼∗

ℎ𝐶3𝑆
∗𝐸∗

(𝑝 (
𝐼𝑛+1

𝐼∗
) − 𝑝 (

𝐼𝑛
𝐼∗

)) +
𝛼𝑅∗

ℎ𝐶2𝑆
∗𝐸∗

(𝑝 (
𝑅𝑛+1

𝑅∗
) − 𝑝 (

𝑅𝑛

𝑅∗
))

≤
−𝛼ℎ(𝑆𝑛+1 − 𝑆∗)2

𝑆𝑛+1𝑆
∗𝐼∗

−
𝛼

𝐸∗
(

𝐸∗

𝐸𝑛+1

𝐼𝑛
∗

𝐼∗

𝑆𝑛+1

𝑆∗
− 2 −

𝐼𝑛
𝐼∗

+
𝑆∗

𝑆𝑛+1

+
𝐸𝑛+1

𝐸∗
) −

𝜔𝐼∗

𝑆∗𝐸∗
(
𝐸∗𝐼𝑛+1

𝐸𝑛+1𝐼
∗
+

𝐼∗𝐸𝑛+1

𝐼𝑛+1𝐸
∗
−

2) −
𝛼𝑅∗

𝑆∗𝐸∗
(
𝐸∗𝑅𝑛+1

𝐸𝑛+1𝑅
∗
+

𝑅∗𝐸𝑛+1

𝑅𝑛+1𝐸
∗
− 2)

≤
−𝛼ℎ(𝑆𝑛+1 − 𝑆∗)2

𝑆𝑛+1𝑆
∗𝐼∗

−
𝛼

𝐸∗
(𝑝 (

𝑆∗

𝑆𝑛+1

) + 𝑝 (
𝐼𝑛+1

𝐼∗
) + 𝑝 (

𝐸∗

𝐸𝑛+1

𝐼𝑛
𝐼∗

𝑆𝑛+1

𝑆∗
) − 𝑝 (

𝐼𝑛
𝐼∗

)) −
𝜔𝜔∗

𝑆∗𝐸∗

(𝑝 (
𝐸∗𝐼𝑛+1

𝐸𝑛+11
∗
) + 𝑝 (

𝐼∗𝐸𝑛+1

𝐼𝑛+1𝐸
∗
)) −

𝛼𝑅∗

𝑆∗𝐸∗
(𝑝 (

𝐸∗𝑅𝑛+1

𝐸𝑛+1𝑅
∗
) + 𝑝 (

𝑅∗𝐸𝑛+1

𝑅𝑛+1𝐸
∗
)) .

 

 

Therefore, for any number 𝑛 that is 0 or 

greater, the sequence 𝑤(𝑛) from 𝑛 = 1 to 

infinity decreases monotonically. Since 

𝑤(𝑛) is always nonnegative and as 𝑛 goes 

to infinity, the difference between 𝑤(𝑛 +
1) and 𝑤(𝑛) gets closer to 0, we can say 

that as n becomes very large, 𝑆(𝑛 + 1) 

approaches 𝑆∗, 𝐸(𝑛 + 1) approaches 𝐸∗, 

𝐼(𝑛 + 1) approaches 𝐼∗, and 𝑅(𝑛 + 1) 

approaches 𝑅∗. This finishes the proof. 

The numerical solution shown in the Figure 

4 (a-d) also show that if 𝑅0 is greater than 

1, then the results from the NSFD method 

(3) will get close to the DEE point, no 

matter how big or small the step size is. The 

NSFD method is always convergent for the 

system given in (eq. 1). 

 

Conclusion 
 

This paper presents a model that looks at 

how typhoid fever spreads in a non-linear 

way. The spread of the disease mainly 

depends on how often people are in contact 

with sick individuals in the community. 

The RK-4 and NSFD methods are used to 

describe behaviors and properties, 

containing the local and global stability of 

the DFE and DEE points. The NSFD 

method fixes all disadvantages of the RK-4 

method and provides accurate numerical 

solutions. Convergence shows that the 

method stays stable and keeps its positive 

features. The main advantages of this 

method have been shown theoretically and 

numerically. This approach works well, 

even when using large time intervals. This 

is a big benefit for implementing and 

computing. Moreover, the RK-4 method 

cannot accurately keep the main features of 

the original continuous model. This means 

it can give numerical solutions that are 

different from the original model's 

solutions. The NSFD scheme presents 

better outcomes for both society and the 

field of medical science. 

Soon, we want to search other disease 

models that are similar to the one we are 

looking at. This will help us understand the 

risks to public health better. To show that it 

works well and is biologically sound, we 

create three different methods: Euler, RK-

4, and NSFD, to examine various features 

of the model. Models of typhoid fever are 

particularly relevant in this regard. 
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