Investigating the pivotal role of gut microbiota in cognitive disorders

Main Article Content

Elham Akbari
Dawood Hossaini
Murtaza Haidary

Abstract

Background: The human intestine harbors a collection of microorganisms known as intestinal microbiota, which encompasses bacteria, archaea, and eukaryotes. However, bacteria reign supreme as the most prevalent members of the intestinal microbiota. Notably, the gut microbiota plays a crucial role in regulating various physiological functions of the human body. In addition to its influence on digestion, the gut microbiota also exerts control over the function of the brain and central nervous system, earning the enteric nervous system the title of the "second brain." The behavior and mood, as well as the progression of nervous system diseases like multiple sclerosis, autism, Alzheimer's, schizophrenia, and Parkinson's, can potentially be regulated by the intestinal microbiota. Through the intestinal nervous system, production of metabolites, stimulation of entero-endocrine cells, and the immune system, the gut microbiota plays a role in regulating the function of the central nervous system. Disturbances caused by improper nutrition, indiscriminate use of antibiotics, stress, anxiety, and depression are significant factors that can worsen these diseases and disrupt the balance of gut microbiota.

Article Details

How to Cite
Akbari, E., Hossaini, D., & Haidary, M. (2024). Investigating the pivotal role of gut microbiota in cognitive disorders . Afghanistan Journal of Infectious Diseases, 2(1), 75–84. https://doi.org/10.60141/AJID/V.2.I.1.9
Section
Review Article
Author Biographies

Elham Akbari, Khatam Al-Nabieen University

Department of Biology and Microbiology, School of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan

Dawood Hossaini, Khatam Al-Nabieen University

Department of Biology and Microbiology, School of Medical Laboratory Technology, Khatam Al-Nabieen University, Kabul, Afghanistan

Murtaza Haidary, Khatam Al-Nabieen University

Research and Technology Center, Khatam Al-Nabieen University, Kabul, Afghanistan.

References

Berryhill ME, Peterson D, Jones K, Tanoue R. Cognitive Disorders. In: Ramachandran VS, (ed). Encyclopedia of Human Behavior. Second Edition. San Diego: Academic Press; 2012. P. 536-542.

WHO. Alzheimer Disease and Other Dementias. Available at: www.who.int/medicines/areas/ priority_medicines/BP6_11Alzheimer.pdf. Accessed November 15, 2019.

WHO. Dementia: Fact Sheet. Available at: https://www.who.int/newsroom/fact-sheets/ detail/dementia. Accessed November 15, 2019.

Ejtahed HS, Angoorani P, Soroush AR, Siadat SD, Shirzad N, Hasani-Ranjbar S, et al. Our Little Friends with Big Roles: Alterations of the Gut Microbiota in Thyroid Disorders. Endocrine, Metab immune Disord Drug Targets 2020; 20(3): 344-350.

Ejtahed HS, Soroush AR, Angoorani P , Larijani B, Hasani-Ranjbar S. Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents. Horm Metab Res 2016; 48(6): 349- 358.

Ejtahed H-S, Angoorani P, Hasani-Ranjbar S, Siadat S-D, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: A systematic review. Microb Pathog 2018; 116: 13-21.

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, s tability and resilience of the human gut microbiota. Nature. 2012; 489(7415): 220-30.

Cryan JF, O'Mahony SM. The microbiomegut-brain axis: from bowel to behavior. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2011; 23(3):187-92.

Mayer EA. Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience. 2011;12(8):453-66.

Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The Impact of microbiota on brain and behavior: mechanisms & therapeutic potential. in: lyte m, cryan jf, editors. microbial endocrinology: the microbiotagut- brain axis in health and disease. New York, NY: Springer New York; 2014. p. 373-403.

Niall Hyland, John Cryan, "Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system," Developmental Biology, pp. 182-187, 2016.

Neufeld KA, Fos ter JA. Effects of gut microbiota on the brain: implications for psychiatry. J Psychiatry Neurosci. 2009; 34(3): 230-1.

Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by microbiome. Neurobiol stress. 2017: 7: 124-36

Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous sys tems. Ann Gas troenterol. 2015; 28(2): 203-9.

Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014; 34(46): 15490-6.

Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Frontiers in integrative neuroscience. 2013 Oct 7;7:70.

Bray N. Gut-brain communication: Making friends with microbes. Nat Rev Neurosci. 2016; 17(9): 533. doi: 10.1038/nrn.2016.93.

Dinan TG, Cryan JF. Gut-brain axis in 2016: Braingut- microbiota axis - mood, metabolism and behaviour. Nat Rev Gas troenterol Hepatol. 2017; 14(2): 69-70.

Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med. 2016; 14(1): 298. doi: 10.1186/s12967-016-1058-7.

De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, et al. Microbiota and hos t determinants of behavioural phenotype in maternally separated mice. Nat Commun. 2015; 6: 7735. doi: 10.1038/ncomms8735.

Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intes tinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gas troenterology. 2011; 141(2): 599-609.

Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012; 64(2): 238-58.

Prinsloo S, Lyle RR. The microbiome, gut-brainaxis, and implications for brain health. NeuroRegulation. 2015; 2(4): 158-61.

Prinsloo S, Lyle RR. The microbiome, gut-brainaxis, and implications for brain health. NeuroRegulation. 2015; 2(4): 158-61.

Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11): 763-81.

Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of s tress and neuroinflammation. Neurobiol Stress. 2016; 4: 23-33.

Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012; 46(6): 261-74.

Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015; 63: 1-9. doi: 10.1016/j. jpsychires.

Galland L. The gut microbiome and the brain. J Med Food. 2014; 17(12): 1261-72.

Moret C, Briley M. The importance of norepinephrine in depression. Neuropsychiatr Dis Treat. 2011; 7(1): 9-13.

Forsythe P, Bienens tock J, Kunze WA. Vagal Pathways for microbiome-brain-gut axis communication. in: lyte m, cryan jf, editors. microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York, NY: Springer New York; 2014. p. 115-33.

Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding th microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017; 179: 223-44.

Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annual review of neuroscience. 2017 Jul 25;40:21-49.

Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and hos t behavior. Annu Rev Neurosci. 2017; 40: 21-49.

Ressler KJ. Amygdala activity, fear, and anxiety: modulation by s tress. Biol Psychiatry. 2010; 67(12): 1117-9.

Leung K, Thuret S. Gut microbiota: a modulator of brain plas ticity and cognitive function in ageing. Healthcare (Basel). 2015; 3(4): 898-916.

Chen JJ, Zeng BH, Li WW, Zhou CJ, Fan SH, Cheng K, et al. Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behav Brain Res. 2017; 322(Pt A): 34-41.

Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017; 5(1): 24. doi: 10.1186/s40168-017-0242-1.

Li Q, Han Y, Dy ABC, Hagerman RJ. The gut microbiota and autism spectrum disorders. Front Cell Neurosci. 2017; 11: 120. doi: 10.3389/fncel.2017.00120.

Mu C, Yang Y, Zhu W. Gut microbiota: the brain peacekeeper. Front Microbiol. 2016; 7: 345. doi: 10.3389/fmicb.2016.00345.

Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016; 39(11): 763-81.

Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gas troenterology. 2013; 144(7): 1394-401.

Liu X, Cao S, Zhang X. Modulation of gut microbiotabrain axis by probiotics, prebiotics, and diet. J Agric Food Chem. 2015; 63(36): 7885-95.

Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of s tress and neuroinflammation. Neurobiol Stress. 2016; 4: 23-33.

Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and hos t behavior. Annu Rev Neurosci. 2017; 40: 21-49.

O’Mahony SM, Tramullas M, Fitzgerald P, Cryan JF. Rodent models of colorectal dis tension. Curr Protoc Neurosci. 2012; 9(9): 40. 40. doi: 10.1002/0471142301. ns0940s61.

Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012; 13(10): 701-12.

Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A. 2017; 114(40): 10719-24.

Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al. Multiple sclerosis patients have a dis tinct gut microbiota compared to healthy controls. Sci Rep. 2016; 6: 28484. doi: 10.1038/srep28484.

Hindson J. Multiple sclerosis: A possible link between multiple sclerosis and gut microbiota. Nat Rev Neurol. 2017; 13(12): 705. doi: 10.1038/nrneurol.2017.142.

Tognini P. Gut Microbiota: A potential regulator of neurodevelopment. Front Cell Neurosci. 2017; 11: 25. doi: 10.3389/fncel.2017.00025.

Clark A, Mach N. Exercise-induced s tress behavior, gut-microbiota-brain axis and diet: a sys tematic review for athletes. J Int Soc Sports Nutr. 2016; 13: 43. doi. org/10.1186/s12970-016-0155-6.

Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012; 37(11): 1885-95.

Thayer JF, Sternberg EM. Neural concomitants of immunity—Focus on the vagus nerve. Neuroimage 2009; 47(3): 908-910.

Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences 2011; 108(38): 16050-16055.

Forsythe P, Bienenstock J .Immunomodulation by commensal and probiotic bacteria. Immunological investigations 2010; 39(4-5): 429-448.

Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neurosc 2008; 9(1): 46-56.

Mosher KI, Wyss-Coray T. Go with your gut: microbiota meet microglia. Nature Neuroscience 2015; 18(7): 930-931.

Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-977.

Ni J, Shen T-CD, Chen EZ, Bittinger K, Bailey A, Roggiani M, et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci Transl Med 2017; 9(416).

Iadecola C. Dangerous leaks: blood-brain barrier woes in the aging hippocampus. Neuron 2015; 85(2): 231-233.

Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325- 2340.

Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour–epigenetic regulation of the gut–brain axis. Genes Brain and Behav 2014; 13(1): 69-86.

Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol in Health Dis 2015; 26(1): 26050.